奥数网
全国站

奥数 > 小学资源库 > 奥数练习题 > 五年级奥数 > 简单的统筹规划 > 正文

五年级最佳策略例题讲解

2017-02-10 14:20:18      下载试卷

  五年级最佳策略例题讲解

  【最佳策略】

  例1A、B二人从A开始,轮流在1、2、3、……、1990这1990个数中划去一个数,直到最后剩下两个数互质,那么B胜,否则A胜。问:谁能必胜?制胜的策略是什么?

  讲析:将这1990个数按每两个数分为一组;(1、2),(3、4),(5、6),…,(1989、1990)。

  当A任意在括号中划去一个时,B就在同一个括号中划去另一个数。这样B就一定能获胜。

  例2桌上放有1992根火柴。甲乙两人轮流从中任取,每次取得根数为1根或2根,规定取得最后一根火柴者胜。问:谁可获胜?

  讲析:因为两人轮流各取一次后,可以做到只取3根。谁要抢到第1992根,谁就必须抢到第1989根,进而抢到第1986、1983、1980、…、6、3根。

  谁抢到第3根呢?自然是后取的人。即后取的可以获胜。

  后者获胜的策略是,当先取的人每取一次火柴梗时,他紧接着取一次,每次取的根数与先取的加起来的和等于3。

  例3有分别装球73个和118个的两个箱子,两人轮流在任一箱中任意取球,规定取得最后一球者为胜。问:若要先取者为获胜,应如何取?

  讲析:先取者应不断地让后者在取球之前,使两箱的球处于平衡状态,即每次先取者取之后,使两箱球保持相等。这样,先取者一定获胜。
 

来源:奥数网

      欢迎访问奥数网,您还可以在这里获取百万真题,2023小升初我们一路相伴。>>[点击查看]

分类

专题

类型

搜索

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

本周新闻动态

重点中学快讯

奥数关键词

广告合作请加微信:17310823356

广告服务 - 营销合作 - 友情链接 - 网站地图 - 服务条款 - 诚聘英才 - 问题反馈 - 手机版

京ICP备09042963号-15 京公网安备 11010802027854号

违法和不良信息举报电话: 010-56762110 举报邮箱:wzjubao@tal.com

奥数版权所有Copyright@2005-2021 www.aoshu.com. All Rights Reserved.

欢迎来到奥数网

您的IP地址是: 10.1.5.199, 216.73.216.91
如果您所在的城市未开设奥数网分站,请进入全国站>>