奥数网
全国站
您现在的位置:奥数 > 小学数学网 > 数学大师,数学家 > 正文

数学家的故事:欧几里得的《几何原本》

来源:网络资源 文章作者:奥数网整理 2019-06-18 17:25:52

智能内容

数学家的故事:欧几里得的《几何原本》

  完全数

  此外,欧几里得在《几何原本》中还对完全数做了探究,他通过 2^(n-1)·(2^n-1) 的表达式发现头四个完全数的。

  当 n= 2: 2^1(2^2-1) = 6 当 n= 3: 2^2(2^3-1) = 28 当 n= 5: 2^4(2^5-1) = 496 当 n= 7: 2^6(2^7-1) = 8128 一个偶数是完全数,当且仅当它具有如下形式:2^(n-1).(2^n-1),此事实的充分性由欧几里得证明,而必要性则由欧拉所证明。

  其中2^(n)-1是素数,上面的6和28对应着n=2和3的情况。我们只要找到了一个形如2^(n)-1 的素数(即梅森素数),也就知道了一个偶完全数。在手算时代梅森素数可使人们更方便的计算完全数,在计算机时代更是得到了广泛深入的应用,计算机的CPU可以更方便的计算各种数。

  尽管没有发现奇完全数,但是当代数学家奥斯丁·欧尔证明,若有奇完全数,则其形式必然是12p+ 1或36p+ 9的形式,其中p是素数。在10^300以下的自然数中奇完全数是不存在的。

  首五个完全数是:

  6

  28

  496

  8128

  33550336(8位)

欢迎来到奥数网

您的IP地址是: 18.218.209.109 马萨诸塞州大波士顿区麻省理工学院
如果您所在的城市未开设奥数网分站,请进入全国站>>