奥数网
全国站
您现在的位置:奥数 > 小学新闻 > 小升初试题 > 小升初数学试题 > 正文

2019年小升初数学重点题型例题:数位问题

来源:网络资源 文章作者:奥数网整理 2019-08-20 11:07:12

智能内容

  数字数位问题

  1.

  把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?

  解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

  解题:1+2+3+4+5+6+7+8+9=45;45能被9整除

  依次类推:1~1999这些数的个位上的数字之和可以被9整除

  10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除

  同样的道理,100~900 百位上的数字之和为4500 同样被9整除

  也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;

  同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005 从1000~1999千位上一共999个“1”的和是999,也能整除;

  200020012002200320042005的各位数字之和是27,也刚好整除。 最后答案为余数为0。

  2.

  A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...

  解:

  (A-B)/(A+B) = (A+B - 2B)/(A+B)=1-2 * B/(A+B)

  前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。 对于 B / (A+B) 取最小时,(A+B)/B 取最大, 问题转化为求 (A+B)/B 的最大值。

  (A+B)/B =1 + A/B ,最大的可能性是 A/B =99/1 (A+B)/B =100

  (A-B)/(A+B) 的最大值是:98/100

濞嗐垼绻嬮弶銉ュ煂婵傘儲鏆熺純锟�

閹劎娈慖P閸︽澘娼冮弰顖ょ窗 10.2.75.251, 216.73.216.147
婵″倹鐏夐幃銊﹀閸︺劎娈戦崺搴$閺堫亜绱戠拋鎯с偉閺佹壆缍夐崚鍡欑彲閿涳拷鐠囩柉绻橀崗銉ュ弿閸ョ晫鐝�>>